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The Klein-Gordon equation with indefinite form 

J il Arredondo Ruh 
Universidad Au16noma Metmpolilana-I, Departamento de Matemiticas, Apdo. Postal 
55-534. Mkdco, DF, CP 03340. Mexico 

Received 26 November 1992. in final form 6 May 1992 

AbstracL in  ihis manuscript we mnsider the iElein4ordan equation and pmve asymp- 
Colic mmpleten? far modified Moller operators in the case where the m ' a l e d  energy 
form is no1 positive on a subspace of infinite dimension. In panicular, the subspace 
orthogonal in the energy form 10 the eigenvectors of the Hamiltonian of the Klein- 
Gordon equation has no singular spectrum. 

1. Introduction 

In this paper the Klein-Gordon equation is studied. The case where the associated 
energy form is not positive on a subspace of infinite dimension is considered. We show 
that for scattering theoly the subspace of negative energy is not relevant. hymptotic 
completeness for generalized Moller operators is proved. In particular, the subspace 

Gordon equation has no singular spectrum. See theorem 1 below. 
We refer to the papers [5,7,8] where it is proved in the general setting of Lax- 

Phillips asymptotic completeness for the acoustic and wave equations for the case 
where the energy form is positive on a subspace of finite codimension. We refer to 
[14] where the scattering theory for the Klein-Gordon equation for the case where 
the energy form h positive B developed. We also refer to [15! where scattering theory 
for the Klein-Gordon equation is considered for other norms apart from the energy 
norm. In [14] and 1151, the norm induced by the perturbed energy form is equivalent 
to the norm induced by the non-perturbed energy form. Here we do not assume this. 

In section 2 we define the spaces %,,Ha and the Hamiltonians H, Ha for the 
Klein-Gordon equation in the perturbed and the free cases. It is showed that both 
operators generate unitary groups with respect to the corresponding energy forms. In 
section 3 we define the Moller operators for H and H,.  We prove that they exist 
and show that their range consist of the subspace orthogonal in the energy form to 
the eigenvectors for H. 

nrth.qa!%r! i!! %e ecergy fer!!? to !!!e eigeEveC!eE of thP Hami!lnnian of t!!e Klein- 

2. Klein-Gordon equation Hamiltonians 

'The Klein-Gordon equation is the partial differential equation 

0305-447042/174705+18504.50 @ 1992 IOP Publishing U d  4iiX 



4706 J H Arredondo Rub 

with z E R",n 2 1, t E R1 and 

j = 1 , 2  ,..., n. G.2) 
. a  
axj Dj := -1- 

For A ( z )  a measurable function on R", we denote by A the multiplication operator 
with the function A( z) as well as the function itself. q, and bj , j = 1,2,. . . , fl  are 
real-valued measurable functions on R" and m is a non-negative constant. 

This equation describes a relativistic particle with spin zero and mass m in the 
presence of a magnetic potential b,, j = 1,2 ,  . . . , n and scalar potential 9.. 

By following a common procedure one can transform equation (2.1) to an equiv- 
alent equation of order one with respect to time. We take fi(z,t) = U(z,t) and 
fz(z,t) = ia@(z , t ) /a t  and define 

- 
f = (i). 

(2.1) is equivalent to the following equation 

i a f =  hf at 
where h is the matrix operator given by 

n 
L = C(Dj - b j ) 2  + .m2 -i q,(z). 

j=i 

Equations (2.4H2.6) for qs = b, = 0, j = 1 , 2 ,  . . . , n are respectively 

Here 

(2.3) 

H,,=  [ '1 
Lo 0 

2 L , = - A + ~ .  

( , ) will always denote the usual inner product on LZ(Rn,d".z)  3 Lz(R" )  antilin- 
ear in the factor on the left. We can associate with Lo a sequilinear form defined for 
f,gE C,"'(Rn):= CF(Rn)fBCF(R") 
- 

(2.11) 

(2.12) 
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C,"I2(Rn) is a pre-Hilbert space with inner product ( , )o. Let 71, denote the 
completion Of C,"12(Rn) with respect to the norm induced by this inner product A 
direct calculation shows that 

71, H I  @ L2( Rn) (214) 

where H, := {q E L2(Rn)I \1(1+ lp(2)d/2Fppl\ < CO} E Sobolev space of order s, if 

m # 0. HI := D(LiI2:, if m = 0. Here D ( A )  means the domain of the operator 
A. For a non-negative self-adjoint operator A, .All2 will denote the positive square 
root of A defined by functional calculus. M denotes the completion of M with 
respect to the norm induced by the inner product ( , L o  ) and F denotes the FoUneI 
transform operator defined as an unitary operator on Lz(Rn) [lo] 

--I 

(2.15) 

Here limM,+, means the limit in the L2-norm. In general, there are ideal vectors 
f = ($:) E 71, with fl not belonging to L2(  R"). 

The case m # 0 is easier to treat. In fact, some of the arguments given below 
simplify. We only give the details for m = 0. 

Let { Pn( I C ) }  denote the spectral family associated with a self-adjoint operator 
K .  A dense set in 7fo is given by vectors 7 = ({;) such that for some 6 > 0 

- 

fi E D ( L Y 2 )  (2.16) 
,- Ih 

fz E L?(;2"j I'.", 

P(6,+m)(L0)fl = fl p ( 6 , + m ) ( L 0 ) f 2  = f 2 '  (2 18) 

We put L;(R") := L2(Rn,d"z) @ L2(Rn,d"z)  and let V, be the linear oper- 
ator from 71, into L:(Rn) defined by [13] 

(2.19) 

Here 
obeying (2.16)-(2.18). Fbr these vectors f 

is defined by functional calculus. V, is well defined at least for vectors f 

Il,,7112 l l v o J l l K ~ ~ l l J l l ' l f o ~  - 11'5112 (2.2!2) 

This implies that V, is unitary from a dense set in 71, into Li( R"). Ruthermore, a 
dense set in L',( R") is given by vectors 3 = (;;) such that for some 6 > 0 

9 1 3 9 2  E L2(R")  (221) 
p(6,+ce)(L0)g1 = 91 p(6,+ce)(L0)g2 = 9 2  (2.22) 

Let 3 = (;;) obey (2.21)-(2.22). It follows that 

(2.23) 
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is a vector in D(L; / ' )  @ L z ( R " )  for which (216)-(2.18) are valid and 

Vag' = (;;) = g .  (2.24) 

Therefore, (2.20)-(2.24) show that V, is unitary from a dense set in 'Ho onto a dense 
set in .C:(R"). V, can be extended to an unitary operator from 'If, onto t z (R") .  
We denote this extension also by V,. A direct calculation shows that for vectors 
g = (i;) satisfying (2.21) and (2.22), the inverse operator 6-l of V, is - 

For fl E D(L;12p  one has that L;/2fl E L2(R") .  If we denote by L;'/'g, the 

data 1/, E D ( L i I 2 T  such that Lt"$ = g1 E L2(Rn) then (2.25) is valid on all of 
t ; (R") .  By direct calculation we obtain 

H, = &-'HoVo (2.26) 
with 

(2.27) 

It follows easily that H, is a self-adjoint operator on 'H, with domain D( H,) = 
[D( Lo) ]  @ D( LA/2) .  Here 

0 

[WLJI = {fllfl E D(LA12) , LAl2f1 E D(LAI2)1 (2%) 
In the above we have used that Lo is a positive operator on L2(R").  If the 

operator L has also a positive self-adjoint extension on L2( R"), one can follow step 
by step the calculations done above. We consider the case when the operator L has 
a non-positive self-adjoint extension. 

Assumplion 2. There exists a compact Subset of measure zero r c R", contained 
in a ball of radius T~ such that the functions 0.: Dj . bj . j = 1.. . . . n belong to 
LP,,(R"\r),p> Zandthefunctions b j , j  = 1 ,  ...,n belongto Lf,,(R"\r),4>4. 

C the operator f ( - io )  in L2(R") 
[lo] acting by the rule 

with domain of definition D( f( -iV)) 

Here F-' is the inverse of the Fourier transform F. We also put 

Let 4 be a positive function in Cm( R + )  with 11& < 1, and such that 

We take for a measurable function f : R" 

( f ( - iV)v ) (z )  := ( F-' f F v ) ( z )  

D(f( - iV)  = {v E L 2 ( R " ) l f ( k )  . ( ~ v ) ( k )  E LZ(R")I. 

(229) 

(230) 

C , ( k )  = lkl" + 1. (2.31) 

for 0 < T < 1 
for 2 <I < +oo. +(I)= {: 

J will denote the operator which acts by multiplication with the function 

where r is contained in the ball of radius T,, B,, C R". 

Lo(=) := 4(1zI/po) (2.32) 
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/Lrrumplion 2. The operator L defined on C r  (R" \ I') has a self-adjoint extension 
on L2(R") .  We will also denote by L any such extension. This extension obeys the 
E m  conditions [3] 

( L  - i ) - l J  - J (  Lo - i)-' E compact operator 

(1 - J ) ( L  - i)-' I compact operator 
(2334  

(2336) 

and 

II(LJ-  JLo)G; ' ( - iV)~ l1  E h ( r )  E L ' ( R + , d r )  for some positive integer q 

(2.34) 

I I (LJ -  JLo)G;'(-iV)l1 i t o o .  (2.35) 

is the characteristic function of the complement of the ball of radius T in Here 
R". 

From Weyl's theorem and (2.33) the essential spectrum of L,  U,,,( L), is equal to 
[0, +CO). Then the spectrum of L below 0 consists of discrete eigenvalues with finite 
multiplicity. We put P := P(-m,ol(L)  and Po will denote the spectral projection 
onto the kernel for L. Moreover, P l  := I - P - Po. Here I is the identity operator 
on L2(R").  Let {$j};z denote the eigenvectors for L corresponding to the strictly 
negative eigenvalues {-xj}:z counting multiplicity 

Ld,. = -A;& ' I  xi > 0 v j  = 1:  2 : .  . . :+CO (2.36) 

(237) 
' I  

( i j , l L k )  = 6 j k  V j ,  k = 1 , 2 , .  . . ,+ca. 
7he  energy form associated with the Klein-Gordon equation (2.1) is taken to be 

( f . B ) E  = ( f 1 , L S l )  + ( f 2 , 9 2 )  (2.38) 

f =  (2) 

This energy form is defined for data f , g  E D(IZ1'/*) @ L2(R") .  We denote by Hi 
the subspace of D( 1LI1I2) f3 L2(R")  generated by the finite linear combinations of 
data f = ($), with f l  E D(IL1'/2) and Pfl = f l .  Let the vectors 4; E HE be 
given by 

(24) 

We obtain from (2.36) and (2.38) that 
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The set of vectors f = (j;) belonging to the E-orthogonal complement to 71; in 
D( IL1'12) @ L2( R") must obey 

(qJ,f)E = v j  1 .  (2.43) 

It follows that f obeys (2.43) if and only if 
,, . . ($Jj,fl) = 0 "3 3 i .  (2.U) 

Therefore, f = (;:) is in the E-orthogonal complement to 71; if and only if 

(2.45) 

(246) 

Let %(E denote the set of data f = (j;) obeying (2.45) and (246) . On this set of 
data, the energy form is non-negative but not positive definite if L has eigenvalue 
zero. A way out of this difficulty is to work in the quotient space 71L/Zo ,  where 

Zo = {f= ({:)If, E Ran Po, f2  = 0). (2.47) 

We define 'HL := 'Hk/Zo. The coset corresponding to a vector f € 'HL, will also 
be denoted by f = (;;). The energy form (2.38) is induced on 712. We will use the 
same symbol ( , ), to indicate this induced form. 

We denote by 'Hk the direct sum of 'HE and 71;. The energy form is negative 
definite on 'Hp x ' H i  and positive definite on 71; x 'Hk. 71, will denote the direct 
sum of the spaces obtained from the completion of 71: with respect to the norms 
induced by the forms rt( , ),. Then a vector f = (j;) is in ' H E ,  if and only if it can 
be written as 

I-  

f = g + i l  (2.48) 

with 

(2.49) 

and 
inner product 

belongs to the completion of 'Hi with respect to the norm induced by the 

(f,s)+ = ( f l ,P*LYl)  + ( f Z 3 Y . 2 ) .  (2.50) 

The space 71, coincides with the Hilbert space obtained by completion of the pre- 
Hilbert space 71k with inner product ( , )% 

tf ,0)% := ( f i>lLlSl)  + ( f V . 9 2 ) .  (2.51) 

For f, 0 E 'Hk one can see that 
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Therefore, the energy form ( , ) E  can he extended in an unique way to all of 
'HE x ' H E .  As in the case for R,, a dense set for ' H E  in the %-norm is given by 
vectors f = (;;) such that for some c > 0 

and by the vectors f = (;;) such that 

fl = 0 
f z  E Ran Po. 

(257) 
(2.58) 

'RI see that these Vectors form a dcnse set one can note that each vector in 31k can 
be witten as the sum 

I? cn\ 
(L.27, 

This equality is thought of as vectors in 'HE. For two subspaces A and B of 'HE we 
will denote hy A tBE B the direct sum of the subspaces A and B if and only if they 
are orthogonal with respect to the energy form and also with respect to the inner 
product ( , h. 

i e t  (j-pjD(iLl;/2j denote the set oivectors j E IJ \ ILI* /* )  with (i-pjf = f. 
Here I is the identity operator on L 2 ( R " ) .  We take D(ILl lI2)  as the completion 
of the space generated by vectors fl  such that (9) E 'HE cBE ( ( I  - P)D(ILI' /2)  €8 
O)/Z,  c 'HE with respect to the norm induced by the inner product ( ,ILI ). 
It easily follows that 

- , I  _.. ,.,~ 

It l ~ l l ~ z f l l l  = Ilfllx. (2.61) 

-̂ -̂ c-..̂  I r 1 1 p r  7 2 1  D n \  ,,,G,c,u,c( ,L,- 

Similarly, let @ belong to Lm(R1) and +(L) he defined by functional calculus. If 
f = (9) E 'HE ( ( I  - P ) D (  

E * (1L , ail4 /L/'!2 caii be extended te a!! af E(lLll!2). 

f3 O ) / Z , ,  then ($(:)IL) E 31% and 

mamcllm ar,nn~ i f  r\ tn -11 no r W 2 \  we -ill den apnntp hv I 11112 

and @ ( L )  the extensions to all of D(lLll/ ' ) .  
lllrlrlulr, uur -11 lnlr l l"  Y\Y,  L" "11 ", Y \ , Y ,  ,. ..- ..I.. "8"- --..--- -J 1-1 

The Hamiltonian associated with the Klein-Gordon equation is 

. : = ( E  i) (2.63) 
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with domain 

where 

On [D(1L1)], L acts by the rule 

Here 

1 x > o  
sgn(z)  := 0 x = o  

x < o  

and sgn( L )  is defined by functional calculus. By using the continuity of the energy 
form with respect to the inner product ( . )% and equation (2.62) one can write 

( ? , B ) E  = (IL11/2fl.sgn(L)ILI'/Zgl) + ( f 2 , g 2 )  vf,s E aE. (2.68) 

The operato'r H B in general symmetric in the energy form but not self-adjoint if L 
has a non-trivial kernel. This is showed by the following lemma. See also [54?]. 

Len" 2.1. Let H he defined by (2.63)-(2.65) and L he defined on [D( lLl )]  hy 
(2.66). Then 

( H f , g ) ,  = (f, H g ) €  v'f,s E D ( H ) .  (2.69) 

If for some 6, g E xE 
( f f f , g ) ~ = ( f , L ) ~  V ' f E  D ( H )  (2.70) 

then 3 E D( H) and h - H g  E I<er H .  

Roof. In the proof we will  denote by A, the operator P ( - m , - 6 ) ( L )  + 
F'(,,+m)(L),V6 2 0. By using (2.63)-(2.66) a direct calculation shows that (269) 
is valid. Let g , h  E 71, obey (2.70). We take f = (,") with f2 E D(IL1'/2). Then 
A, f2 E D(lL11/2),V6 > 0. From (2.67). (2.68) and (2.70) we get 

= 0. (2.71) 

The Vectors (t) with ?+!J E D(ILI1l2)  are a dense set for D(lL,l l /z)$O in the 71-norm. 
It follows that for all 6 > 0 

(2.72) 
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This equality is for Vectors in 71,. Applying ILI'/' on both sides of equation (2.72), 
one gets for all 6 > 0 

ILI'I'A6 Sgn(L)g, = IL1-'/'A6hz. (273) 
Wis equality is for vectors in L z ( R " ) .  Equation (2.73) shows that 
IW'[q-m,-l)(L) t p(l,tm)(~)I Sgn(L)gl E D ( I L I ' / ~ ) .  Since I L I ~ / ~ + ~ , ~ ~ ( L )  
is a bounded operator on L2( R") then 

From (2.76) and (2.80) we obtain 

ii - H G  = ( poohz) E I<er H .  (281) 

This proves the lemma. 0 
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Let x, be the closure in the U-norm of the subspace 

x: := { f = (i) E ULI ( PLf1 PL f 2 )  = (2) } . (2.82) 

On U, x X+, the energy form ( , ) E  and the inner product ( , coincide 

( f r g ) E  = ( f , g ) W  vf ,  g E x+. (2.M) 

Moreover, H leaves U, invariant for f E D( H) r)U, 

CoroNury 2.1. 
form ( , ) E  with domain 

H restricted to U+ is a self-adjoint operator with respect to the energy 

P'[D(ILI)] e PLD(ILI'/2) (2.86) 

Proof. This follows easily from lemma 21 and (2.82)-(2.85). 0 

One can see that H has the eigenvalue p if and only if the self-adjoint operator 
on L2(R")L has the eigenvalue p2 .  Then for the negative eigenvalues {-A!}:=? 
of L we must have p p j  = f i X j ,  j = 1 , 2 , .  . . . In fact, the corresponding 
eigenvectors for H are given by 

These vectors obey 

~ f :  = fixj&+ j = 1 , 2 , .  . . ,+m. 

Obviously H leaves the subspace generated by the vectors Ai, j = 1 , 2 , .  . . , +m 
invariant. This subspace will be denoted by 6.  Let $,!, j = 1 , .  . . , +m be defined 
as 

(289) 

The vectors 41 (equation (2.41)), qj and f: arc related by the following equations 
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and 

for j = 1 , 2 , .  . . ,+a?. Since the vectors 4;' generate the Same subspace as the L*, 
one can extend e-'tH by linearity to finite linear combinations of $!I. The operator 
e-irH remains unitary with respect to the energy form on G. In general, e-itH is not 
defined on all of the closure c, in the 7i-norm, of G. For a vector f is in c if and 
only if 

with 

then given 1 E R' one can extend e- i tH to vectors f E such that 

+ z l i c j s i n h ( X j l )  +djcosh(Xj t )12< +W. 
j 2 1  

(2.97) 

(2.98) 

We note that if L is bounded below as a self-adjoint operator on Lz( R") then e-irH 
is defined on all of c. Tb see how e - i rH acts on the E-orthogonal complement to G 
one uses that 

N E  = FeE 71, eE Ker H .  (2.100) 

This follows from (2.59). On a vector (,",) E I<er H 3 0 fB Ran Po, the operator 
e-itH acts as 

(2.101) 
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The subspace '?it is a Hilbert space with inner product given by the energy form 
( , H restricted to 71, with domain D( H) n71, is a self-adjoint operator, due 
to corollary 21. Then e-itH forms a one-parameter group of unitary operators on 
71,. 

Now we can define the E-unitary transformation that makes H unitarily equiva- 
lent to a diagonal operator on Li(R") .  See also [13]. Let V be defined by 

Y .- * - m  " + W  "0 'LE ( ' L  , m u  \ 'L  , 
V+ : 7 1 + - . R a u P * @ R a n P L ~ L 2 ( R " ) @ L 2 ( R " )  (2.103) 

(2. !!q 

(2.104) 

1, ._ T l  m I/ m 1, : Y L2f Dn\ m T 2 f  D"\ 

V- : c+ Ran P @ Ran P c L 2 ( R " )  @ L z ( R " )  

V, : Ker H + Ran Po @ Ran Po C L2(R")  @ L2(R"). (2.105) 

The operator V acts on each of the subspaces c, 71, and I<er H as follows: 

A direct calculation shows that 

r l z ; f  = (T) ($) j =  1 , 2  )..., +CO 

j= 1.2,  . . . , +CO 
v.4; = ( T )  l + i  (2) 

(2.106) 

(2.107) 

(2.108) 

(2.109) 

(2.110) 

this requires V- to be bijective, for the closure in L;( R*) of the subspace generated 
by the vectors { V - ~ ~ l ) ~ ~  is Ran P @ Ran P c L;(R").  Furthermore 

(2.111) 

(2.112) 
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Here we mean by (I - P ) f  = ( I  - P)({ ; )  the vector ({;:;I;;). By using that 
the energy form ( , ) E  is negative definite on Hi, positive on the E-orthogonal 
complement to 31,: and equations (2.41), (2.89) and (2,109)-(2.114) one obtains 

( f , B ) E  = E ( V f , V B )  vlf,sEE,. (2.115) 

We note that E( , ) is continuous with respect to the inner product on L;(R").  
'HE is then E-unitary equivalent by means of the transformation V to a subspace of 
Li( R") if this last space is thought of with given sequilinear form E( , ). The range 
of V, Ran V, is 

Ran V = (Ran  P @ Ran P )  $q (Ran  P' @ Ran P') @p To. 

Here To denotes the subspace of Ran Po @ Ran Po given by 

To = { j o  E Ran  Po @ Ran Polfo = ( !J0) ,  for somef,, E Ran Po). 

By direct calculation one obtains 

(2.116) 

(2.117) 

(2.118) 

(2.119) 

(2.120) 

Here we mean by lLl-1/2fl the data @ E D(1L.11/2) such that lL11/2$ = fl. In 
fact, if fl E (Ran  P 0 ) l ,  then 

(2.121) 

converges in the E-norm to a vector (t) E D ( [ L 1 1 / 2 )  @ 0 and 

lLl1/2$ = f,. (2.122) 

It follows that V;' and V--' as given in (2,118)-(2.119) are valid on all of Ran PL @ 

Ran Pi and all of Rail P @ Ran P respectively. 
Let I? be the operator on L:( Rn) defined by 

(2.123) 

with domain D(I? )  := D(IL11/2) $ D ( l L 1 1 / 2 ) .  By direct calculation, one gets from 
(2.63), (2.118)-(2.120) and (2.123) that 

V D (  H )  = D( I?) n Ran V. (2.124) 
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Moreover, H leaves invariant Ran V and 

H = v-iifv. 
It follows that 

.-ilH - - v-le- i1Hv 

cos t I L ( ' / 2  
-i(Ll1/2sin t (Ll1/2 

(2.125) 

(2.126) 

Here D ,  denotes the projection from 'HE onto 71,. One also has that 

( H f , ! j ) ~ = E ( f i V V f , V g )  V'fE D ( H )  VgE'HE. (2.127) 

3. Moller operators for H and H o  

We have shown that the KJein-Gordon equation in the free case is equivalent to 

a 
i-@ at = fi,@ @ E L:( R") (3.1) 

whereas in the perturbed case, it is equivalent to the equation 

(3.2) 
a 
at 

i-@ = fi@ @ E Lz(R") .  

Here L:( R") is thought of with given sequilinear form E( , ). It Will be shown that 
for scattering theory the subspace of negative energy is not relevant. 

Let X P P (  fi) denote the closure in the L:( R")-norm of the subspace generated 
by the eigenvectors for k. Equation (2.123) shows that 

7 1 P P ( f i )  := W P (  lL11'2) $71PP( (L11 /2 ) .  (3.3) 

Here XPP(IL('/2) denotes the purely point subspace [9] for IL(1/2, where 
considered as a self-adjoint operator on L z (  R").  

Li(R") given by 

is 

For an operator D acting on L?( R")  we will also denote by D the operator on 

(3.4) 

Let A, A, be self-adjoint operators on Hilbert spaces 71, and a,, respectively 
and let Z be a bounded operator from X i  into 71,. The generalized Moller operators 
O + ( A ,  A,; Z )  are defined to be 

R , ( A , A , ;  Z )  := s - 1 - i . W  iini eltAZe-i'AO pa<( 4). (3.5) 
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Here. s-liml-fm means strong convergence in Xz. P,(A,) denotes the orthogonal 
projection onto HaC(A,), the subspace of absolute continuity for the operator A,. If 
2 E 1 = Identity operator on X,, we put R,(A,A, )  = n*(A,A,;Z).  We note 
that P' projects onto the subspace Ran P' @ Ran P* and that Pac(fi,,) 5 1. The 
sequilinear form E( , ) is positive definite on (Ran PL @ Ran P') x (Ran PL @ 
Ran  P L )  and it coincides with the usual L;( R")-norm. Then we can define the 
Moller operators n,(H, fi,; P'J) 

n*(fi,fi,,; P'J) := s - 1-fm lim eitAp'Je-"'a. (3.6) 

Lemma 3.1. Suppose assumptions 1 and 2 are satisfied. Then the Moller opera- 
tors a,( fi, I?,; P'J) exist, are partial isometrics on L;( R") and asymptotically 
complete. This is to say 

Rann*( f i , f I , ;P ' J )  = [.Hpp(~?)]'. (3.7) 

Here A* denotes the orthogonal subspace to A with respect to the sequilinear 
form E( , ). Furthermore, 0 (m and -m for m # 0) is the only possible finite 
limit point of the set of eigenvalues for i~. ~ n y  eigenvalue not equal to zero (*m 
for m # 0) has finite multiplicity. One also has the following equalities 

and 

RanZ1*(8, 8,; P'J) = X c ( L ) @ X c ( L ) .  (3.9) 

Here XC( L )  denotes the subspace of continuity for the self-adjoint operator L 
considered as an operator in Lz(  R"). 

Roof. From (2.134) and (2.27) one obtains that 

Therefore, the Moller operators Q,( i1, fi,; PLJ) exist in L?j(R") if and only if the 
operators 52*(1L11/z, L:lz;  P'J) exist in the L2(Rn)-norm. Let li be an arbitrary 
compact interval in R' and (o be a real-valued function on R' such that its Fourier 
transform function, Fp, belongs to C r (  R' \ 0). By direct calculation one can see 
that 

PK(L) [ f iP ' j - -  P ' j 8 , ]p (Ao)  

(3.11) 
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Here 

Due to the assumption on the support of Fp the operator 

L,'/2 ( ) 1p( ko) 
-1 -1 

(3.12) 

(3.13) 

defined by functional calculus is well defined and bounded. By using Cook's criterion, 
hypothesis (234-(2.35) and equation (3.11) one shows that [2,12] 

exist. One deduces from (2.3%) that the following operator is compact [4] 

It follows that 

By density arguments and equation (3.16) one obtains that the Moller operators (3.6) 
exist. Therefore, the Moller operators Sl*(lL11/2, L;/ ' ,P'J)  also exist in L2(Rn).  
By using (2.34)-(2.35) and the fact that 1 - J is multiplication by a function with 
compact support one gets that the Moller operators a,( L ,  L o )  exist and that 

R,(L,L,)= R * ( L , L , ; P ' J )  = n,(lLI,L,;P'J). (3.17) 

Application of the weak invariance principle for the Moller operators [l] to the pair 
Qf x!f-adj&g Qpprgon [q 2nd L., gives 

a * ( I q 1 ' ~ , L y 2 ; P ~ J )  =R,( (L( ,L , ;  P L J )  =R*(L,L , ;P 'J ) .  (3.18) 

Rom (3.10), (3.17) and (3.18) it is obtained that the operators n,(fi, Ho;  P' J) are 
hometries and that (3.8) holds true. Assumption 2 also implies that the operators 
a,( L ,  L o )  are asymptotically complete [2-4,12]. Therefore, Ran Cl,( L ,  L o )  = 
[%PP(L)]' = [7iPP(lLl'/2)]' = 7 i c ( L ) .  This and equation (3.3) imply (3.7) and 
(3.9). The assertion concerning the p i n t  spectrum of fi also follows from the 
corresponding for L [2,3,12] and the definition of the operator fi. This proves the 
lemma. 0 
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Now we consider what lemma 3.1 implies in the original operators H and H,. 
From (2.26), (2.125) and (3.8) one gets that the two-space Moller operators exist 

Q*(ff,Ho;V-'P'JV,) := s - l l i ~ ~ e i ' H V - ' P ' ~ ~ e - i l H o  

- s- lim e i t H ~ - l p l ~  -itHo 
0e - 

1-*m 

= Q * ( H , H , ;  V-'Plvo) .  (3.19) 

Here s - 1imr4*- means strong convergence in the ?(-norm. Since 

l l Q * ( f i ~ f ~ o ;  p')fllr; = Ilfllr; V,fE L;(Rn) (3.20) 

then 

IIQ*(H, Ho; V-'p'l/o)fllx = Ilfllx. Vf E 71,. (3.21) 

Let XpP(H) denote the closure in the 'H-norm of the subspace generated by the 
eigenvectors for H. Then 

XPp(H) = V-'[?(PP(ff)f7 Ran VI. (3.22) 

We can now prove: 

Theorem 1. Suppose assumptions 1 and 2 are satisfied. Then the two-space Moller 
operators a,( H ,  H,; V-' PL V,) exist, are isometries from ?(, into 71 and asymp- 
totically complete: that is to say 

RanQ*(H,Ho;V- 'PLl /o)  = [?(PP(H))'. (3.23) 

Here A l  denotes the subspace orthogonal to A with respect to the energy form 
( , ) E .  Furthermore, 0 (m and -m for m # 0) is the only possible finite limit 
point of the set of eigenvalues for H .  Any eigenvalue not equal to zero ( i m  for 
m # 0) has finite multiplicity. 

Proof. This follows from lemma 3.1 and (3.19)-(3.22). 0 

Equation (3.23) implies that H has no singular spectrum [ll]. From (3.21) one 
obtains that Voe-itHof will be concentrated asymptotically in Ran P' @ R a n  P l  

Iim IIPLVge-"HDfllr; = l l f l l x o .  (3.24) 

Since the energy form induces a norm 11 I t E  = 11 1 1 %  on ['Ifpp( H )  ]', theorem 1 says 
that any vector fj(z Q,f*) E-orthogonal to ?(PP(H) has evolved in the past and 
will evolve in the future asymptotically as a free state with respect to the energy 

1-*.m 

(3.25) l p L v e - i t H o  Ile-"Hfs - v- 0 f* l lE - 0  if t - *too. 
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